Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation

نویسندگان

  • Lillian J. Juttukonda
  • Walter J. Chazin
  • Eric P. Skaar
چکیده

During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn2+, Zn) and manganese (Mn2+, Mn), but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress. IMPORTANCE Acinetobacter baumannii is a bacterium that causes bloodstream, wound, urinary tract, and pneumonia infections, with a high disease burden in intensive care units. Treatment of A. baumannii infection is complicated by resistance to most antibiotics in use today, and resistance to last-resort therapies has become commonplace. New treatments for A. baumannii infection are desperately needed, but our current understanding of the bacterial factors required to cause infection is limited. We previously found that the abundant innate immune protein calprotectin inhibits the growth of A. baumannii by withholding essential metals. Despite this, A. baumannii is still able to infect wild-type mice, which produce calprotectin during infection. Here, we identify factors employed by A. baumannii during infection to overcome calprotectin-mediated metal sequestration. Moreover, we expose a connection between metal starvation and metabolism that may be a "chink in the armor" of A. baumannii and lead to new treatment options.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of an Acinetobacter baumannii Zinc Acquisition System that Facilitates Resistance to Calprotectin-mediated Zinc Sequestration

Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition met...

متن کامل

The contribution of nutrient metal acquisition and metabolism to Acinetobacter baumannii survival within the host

Acinetobacter baumannii is a significant contributor to intensive care unit (ICU) mortality causing numerous types of infection in this susceptible ICU population, most notably ventilator-associated pneumonia. The substantial disease burden attributed to A. baumannii and the rapid acquisition of antibiotic resistance make this bacterium a serious health care threat. A. baumannii is equipped to ...

متن کامل

Silver Resistance In Acinetobacter baumannii BL54 Occurs Through Binding to a Ag-Binding Protein

The mechanism of plasmid mediated silver (Ag) resistance was investigated in Acinetobacter baumanniiBL54. The intracellular accumulation of Ag in both original strain BL54 and Escherichia coli K12transconjugant containing plasmid pUPI276 began immediately and reached a maximum within 60 minutes.This initial accumulation was followed by net loss of Ag which reached a maximum wi...

متن کامل

Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur.

Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriat...

متن کامل

Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii

UNLABELLED The increasing emergence of antibiotic-resistant bacterial pathogens represents a serious risk to human health and the entire health care system. Many currently circulating strains of Acinetobacter baumannii exhibit resistance to multiple antibiotics. A key limitation in combating A. baumannii is that our understanding of the molecular mechanisms underlying the pathogenesis of A. bau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016